Acta Cryst. (1995). C51, 2539-2542

Molecular Adducts of Inorganic Salts. III. Non-Centrosymmetric $\mathbf{3 P b}\left(\mathrm{ReO}_{4}\right)_{2} . \mathbf{2 t u} \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}(\mathbf{t u}=\mathbf{T h i o u r e a})$

Josef Macíček and Olyana Angelova

Bulgarian Academy of Sciences, Institute of Applied Mineralogy, Rakovski str. 92, 1000 Sofia, Bulgaria

(Received 27 January 1995; accepted 31 March 1995)

Abstract

The non-centrosymmetric three-dimensional framework structure of lead perrhenate thiourea hydrate (space group $\left.P \overline{4} 2_{1} m\right), \quad\left[\left\{\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}\right\}_{3}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is built up of two types of chains running along the c axis: $\left[\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{4}\right]$ and $\left[\mathrm{Pb}_{2}\left(\mathrm{ReO}_{4}\right)_{2} \mathrm{tu}_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{tu}=$ thiourea $)$. In the first type the Pb atom at the inversion point of the $\overline{4}$ axis is surrounded by a highly regular dodecahedron of two tetrads of ReO_{4} groups, forming M -$T-M\left(M=\mathrm{Pb}, T=\mathrm{ReO}_{4}\right)$ bridges. The second type of chain has $m m 2$ symmetry and consists of $\left(\mathrm{PbO}_{7} \mathrm{~S}_{2}\right)_{2}$ bipolyhedra with a common quadratic face of c-repeated pairs of ReO_{4} corners; the next two O atoms in $\mathrm{PbO}_{7} \mathrm{~S}_{2}$ are ReO_{4} corners from the $\left[\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{4}\right]$ chains and the last one belongs to $\mathrm{H}_{2} \mathrm{O}$. The S atoms of the tu molecules act as common vertices of the c-repeated lead bipolyhedra. An interesting feature of this structure is the arrangement of tu and $\mathrm{H}_{2} \mathrm{O}$ molecules in an alternating sequence with short contacts between the C and O atoms [$\mathrm{C} \cdots \mathrm{O} 2.89$ (5) and 2.91 (5) \AA].

Comment

The first thiourea (tu) adducts of Pb salts for which the structure building role of tu was established were $\mathrm{PbCl}_{2} .2 \mathrm{tu}$ (Nardelli \& Fava, 1959) and $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$.tu (Nardelli, Fava \& Branchi, 1960). Herbstein and co-workers published a series of papers on the crystal chemistry of thiourea coordination complexes of Pb^{2+} salts (Herbstein \& Reisner, 1984, and references therein). In these compounds the tu: Pb ratio (n) varies from 1 to 6 and the tu molecules act as monodentate ligands or form single, double or quadruple $\mathrm{Pb}-\mathrm{S}-\mathrm{Pb}$ bridges in the polymerized cationic complexes. The only two adducts of salts with tetrahedral anionic groups were $\mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}$. 6 tu, which crystallizes in white triclinic (Boeyens \& Herbstein, 1967) and yellow tetragonal (Goldberg \& Herbstein, 1972) modifications, and $\mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2} .6$ tu. $2 \mathrm{H}_{2} \mathrm{O}$ (Boeyens \& Herbstein, 1967) with a structure similar to that of the anhydrous tetragonal phase.
Recently, we started an investigation of the structure and properties of different perrhenates with the general
formula $M\left(\mathrm{ReO}_{4}\right)_{2}(M=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Pb}, \mathrm{Cd})$, their hydrates (Macíček \& Todorov, 1992; Todorov \& Macíček, 1995; for powder patterns see ICDD, 1994), and adducts (Macíček, Angelova \& Petrova, 1995a,b: parts I and II of this series). In contrast to urea, which forms adducts with all of the above ions, thiourea compounds were obtained for Pb and Cd only. The title compound crystallizes from aqueous solutions of tu and $\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$ with $\mathrm{tu}: \mathrm{Pb}$ ratios, n, of 1 and 2 . The X -ray powder analysis of the solid residue, however, indicates that besides thiourea in this part of the $\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}-\mathrm{tu}-\mathrm{H}_{2} \mathrm{O}$ system, other phases are also present.
$3 \mathrm{~Pb}\left(\mathrm{ReO}_{4}\right)_{2} .2 \mathrm{tu} .2 \mathrm{H}_{2} \mathrm{O}$ is a new non-centrosymmetric phase containing $\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$ [lead perrhenate itself has space group P31m (Picard, Besse, Baud, Chevalier \& Gasperin, 1984)]. The two distinct Pb atoms in the structure are localized in special positions of the space group $P \overline{4} 2_{1} m: \mathrm{Pb} 1$ lies on the inversion point of 4 [Wyckoff position 2(a)] and Pb 2 on the diagonal mirror plane [4(e)]. The symmetry restricted coordination polyhedron of Pb 1 is a highly regular dodecahedron of eight almost equidistant O atoms at $4 \times 2.592(16)$ (O11) and $4 \times 2.623(18) \AA(\mathrm{O} 12)$. The α and β angles of 54.8 and 19.1° are very close to the angles of 51 and 19°, respectively, that correspond to minimum repulsivity among the ligands (King, 1969). The lengths of the 18 edges vary in the range 3.10 (2)-4.04 (2) A. The ninefold coordinated Pb 2 atom has four O atoms at $2 \times 2.891(15)(\mathrm{O} 21)$ and $2 \times 2.824(16) \AA(\mathrm{O} 22)$, forming the basal square face of a tetra-monocapped tetragonal antiprism; two O atoms at 2×2.564 (14) \AA; two S atoms at 2.973 (9) and 2.991 (9) \AA, being the vertices of the upper rhombohedrally deformed square face; and a capping water O atom, OW , at 2.500 (10) \AA. While the ${\mathrm{Pb} 1 \mathrm{O}_{8}}^{2}$ polyhedra are isolated, the $\mathrm{Pb}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ polyhedra share pairwise the basal tetragonal faces, thus forming $\left(\mathrm{Pb} 2 \mathrm{O}_{7} \mathrm{~S}_{2}\right)_{2}$ bipolyhedra. The $\mathrm{Pb} 2 \cdots \mathrm{~Pb} 2(-x, 1-$ y, z) distance of $3.850(1) \AA$ across the shared face is comparable with the shortest $\mathrm{Pb} \cdots \mathrm{Pb}$ distances in PbO [litharge: 3.674 (1)-3.974 (1) \AA (Boher, Garnier, Gavarri \& Hewat, 1985); massicot: 3.536 (2)-3.856(1) \AA (Hill, 1985)].

The bond lengths and angles in the ReO_{4} tetrahedra have typical values (Lock \& Turner, 1975; Picard, Baud, Besse, Chevalier \& Gasperin, 1984; Macíček \& Todorov, 1992). Three vertices of RelO_{4} take part in a simple mode of coordination with the Pb atoms, two to Pb 1 and one to Pb 2 , the $\mathrm{Pb}-\mathrm{O}$ bonds being of almost equal length (see Table 2) and the $\mathrm{Re}-\mathrm{O}-\mathrm{Pb}$ angles being 135.7 (8), 161 (1) and $170(1)^{\circ}$ for $\mathrm{Re}-\mathrm{Ol1-}$ $\mathrm{Pb} 1, \mathrm{Re}-\mathrm{O} 12-\mathrm{Pb} 1$ and $\mathrm{Re}-\mathrm{O} 13-\mathrm{Pb} 2$, respectively. O11, in addition, is hydrogen bonded to an adjacent tu molecule and O14 is hydrogen bonded to a water molecule (see Fig. 1). Two vertices of $\mathrm{Re}_{2} \mathrm{O}_{4}$ (O21 and O 22) form bifurcated bonds with four Pb 2 atoms, making the $\mathrm{O} 21 \cdots \mathrm{O} 22$ edge a junction between four Pb 2 atoms with angles $\mathrm{Re}-\mathrm{O}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{O}-\mathrm{Pb}$

Fig. 1. Projection of the structure along the c axis with the atom numbering indicated. The Pb polyhedra are outlined on the lefthand side of the drawing. The Re atoms are omitted for clarity. Dotted lines represent hydrogen bonds.
of 136.8 (7) and $83.5(5)^{\circ}$, respectively, for O 21 , and 136.0 (7) and $86.0(5)^{\circ}$, respectively, for O22. The other two O atoms at $\mathrm{Re}_{2} \mathrm{O}_{4}$ are only hydrogen bonded.

The geometry of the coordinated tu is featureless and is similar to that previously reported for the uncoordinated (Elcombe \& Taylor, 1968) and coordinated (Herbstein \& Reisner, 1984) molecules. The amino H atoms, placed at calculated positions, conform to a reasonable hydrogen-bonding scheme as depicted in Fig. 1, with $\mathrm{N} \cdots \mathrm{O} 23(y, 1-x,-z) 2.94(2) \AA$ and $\mathrm{N}-$ $\mathrm{H} 1 \cdots \mathrm{O} 23172(1)^{\circ}$, and $\mathrm{N} \cdots \mathrm{O} 11(x, y, z) 3.22(2) \AA$ and $\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{Oll} 146(1)^{\circ}$.

The crystal has a three-dimensional framework structure formed by two types of chains running along the c axis: $\left[M T_{4}\right]$ and $\left[M_{2} T_{2} \varphi_{2}\right] \varphi_{2}^{\prime}$, in the revised notation of Hawthorne (Eby \& Hawthorne, 1993; Hawthorne, 1994), where $M=\mathrm{Pb}, T=\mathrm{ReO}_{4}, \varphi=$ bridging S atom of tu, and φ^{\prime} stands for the flanking $\mathrm{H}_{2} \mathrm{O}$ molecules. Similar fourfold bridges (as shown below)

to those in the $\left[M T_{4}\right]$ chains (Fig. 2a) exist in the structure of $\mathrm{NaNd}\left(\mathrm{ReO}_{4}\right)_{4} .4 \mathrm{H}_{2} \mathrm{O}$ (Slimane, Silvestre, Freundlich \& Rimsky, 1982). In the structure of $\mathrm{Ca}\left(\mathrm{ReO}_{4}\right)_{2}$.urea. $\mathrm{H}_{2} \mathrm{O}$ this kind of bridging alternates with double urea O -atom bridges of the type:

(Macíček, Angelova \& Petrova, 1995). A rare case of square-face coupling of metal polyhedra is realised in the $\left[M_{2} T_{2} \varphi_{2}\right] \varphi_{2}^{\prime}$ type chains; the Pb polyhedra are interconnected by S and T bridges (Fig. $2 b$) and the chains adopt $m m 2$ symmetry.

(a)

(b)

Fig. 2. Views of (a) the infinite $\left[\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{4}\right]$ chain and (b) the $\left[\mathrm{Pb}_{2}\left(\mathrm{ReO}_{4}\right)_{2} \mathrm{tu}_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$ ribbon.

The water molecule takes part in two short symmetrical hydrogen bonds: the $\mathrm{O} W \cdots \mathrm{O} 14\left(\frac{1}{2}-x, \frac{1}{2}+y\right.$, $1-z) / \mathrm{O} 14(1-x, y, 1-z)$ distances are $2.843(16) \AA$, and the $\mathrm{OW}-\mathrm{H} \cdots \mathrm{O}$ angles are $166.1(5)^{\circ}$. The $\mathrm{Pb} 2-$ OW and $\mathrm{O} W \cdots \mathrm{O}$ bonds are coplanar (Fig. 1) with angles $\mathrm{Pb} 2-\mathrm{O} W \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{O} W \cdots \mathrm{O}$ of $134.0(5)$ and $91.9(5)^{\circ}$, respectively. This geometry is consistent with Class 1, Type D, of water according to Ferraris \& Franchini-Angela (1972). Just above and below this plane are situated C atoms from the adjacent tu molecules, at the short distances of 2.89 (5) and 2.91 (4) \AA for $\mathrm{O} W \cdots \mathrm{C}(x, y, z)$ and $\mathrm{O} W \cdots \mathrm{C}(x, y, 1+z)$, respectively. Such close disposition of $\mathrm{H}_{2} \mathrm{O}$ and tu molecules in stacks may indicate that C and OW atoms are involved in a significant $p_{\pi}-p_{\pi}$ interaction as the planar coordination environment of the water moiety facilitates the $s p^{2}$ hybridization of $\mathrm{O} W$.

Experimental

Crystal data

$\left[\left\{\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}\right\}_{3}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] .-$
$2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=2311.02$
Tetragonal
$P \overline{4} 2_{1} m$
$a=16.208(2) \AA$
$c=5.800(2) \AA$
$2 \mathrm{H}_{2} \mathrm{O} \mathrm{O}_{2} \mathrm{~S}_{3}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}$].
$M_{r}=2311.02$
Tetragonal
$P \overline{4}{ }^{1}{ }_{1} m$
$a=16.208$ (2) \AA
$c=5.800(2) \AA$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 22
reflections
$\theta=20.25-21.16^{\circ}$
$\mu=40.93 \mathrm{~mm}^{-1}$
$T=292 \mathrm{~K}$
$V=1523.5(8) \AA^{3}$
$Z=2$
$D_{x}=5.037 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer
Continuous scan profiles
Absorption correction:

$$
\begin{aligned}
& \psi \text { scan } \\
& T_{\min }=0.529, \quad T_{\max }= \\
& 0.998
\end{aligned}
$$

4712 measured reflections 2324 independent reflections

Prismatic
$0.09 \times 0.07 \times 0.07 \mathrm{~mm}$ Colourless

1317 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=30.0^{\circ}$
$h=0 \rightarrow 22$
$k=0 \rightarrow 22$
$l=-8 \rightarrow 8$
3 standard reflections frequency: 120 min intensity decay: 3.9%

Refinement

Refinement on F
$R=0.041$
$w R=0.049$
$S=0.736$
1317 reflections
108 parameters
H atoms refined as riding
$w=1 /\left[\sigma^{2}(F)+(0.040 F)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.279$
$\Delta \rho_{\text {max }}=4.61 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.88 \mathrm{e}^{\AA^{-3}}$
Extinction correction: Stout \& Jensen (198)
Extinction coefficient: 2.751×10^{7}
Atomic scattering factors from SDP/PDP (EnrafNonius, 1985)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$				
	x		y	z
$\mathrm{Pb1}$	$1 / 2$	$1 / 2$	0	U_{eq}
Pb 2	$0.08398(5)$	$x+1 / 2$	$0.5123(2)$	$0.0178(2)$
$\mathrm{Re1}$	$0.31968(5)$	$0.47198(5)$	$0.4678(1)$	$0.0183(2)$
$\mathrm{Re2}$	$0.39130(5)$	$x+1 / 2$	$-0.0020(2)$	$0.0183(2)$
S	$0.1143(3)$	$x+1 / 2$	$0.0139(15)$	$0.025(1)$
O 11	$0.3584(10)$	$0.5058(11)$	$0.207(3)$	$0.029(5)$
O 12	$0.3864(12)$	$0.5041(13)$	$0.678(3)$	$0.037(5)$
O 13	$0.2267(8)$	$0.5158(10)$	$0.515(3)$	$0.035(4)$
O 14	$0.3099(10)$	$0.3684(8)$	$0.482(3)$	$0.034(4)$
O 21	$0.4328(11)$	$x+1 / 2$	$-0.252(4)$	$0.031(4)$
O 22	$0.4350(11)$	$x+1 / 2$	$0.241(4)$	$0.024(4)$
O 23	$0.2139(10)$	$0.4078(10)$	$0.005(3)$	$0.038(4)$
OW	$0.1931(8)$	$x+1 / 2$	$0.508(4)$	$0.024(4)$
N	$0.2689(10)$	$0.6694(11)$	$0.016(3)$	$0.024(4)$
C	$0.1903(13)$	$x+1 / 2$	$0.010(8)$	$0.037(7)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Pbl}-\mathrm{Oll}$	2.592 (16)	$\mathrm{Pb} 2-\mathrm{O} 22^{\text {¹ }}$	2.824 (12)
$\mathrm{Pbl}-\mathrm{Ol1}{ }^{1}$	2.592 (16)	$\mathrm{Pb} 2-\mathrm{O} 22^{\text {xiii }}$	2.82 (2)
$\mathrm{Pbl}-\mathrm{Ol1}{ }^{1 \prime}$	2.592 (16)	$\mathrm{Pb} 2-\mathrm{OW}$	2.500 (10)
$\mathrm{Pbl}-\mathrm{Ol1} 1^{11}$	2.592 (16)	Rel-O11	1.727 (16)
$\mathrm{Pbl}-\mathrm{Ol2} 2^{\text {iv }}$	2.623 (18)	Rel-O12	1.711 (18)
$\mathrm{Pbl}-\mathrm{O} 12{ }^{\text {v }}$	2.623 (18)	Rel-O13	1.688 (14)
$\mathrm{Pbl}-\mathrm{Ol} 2^{\text {v1 }}$	2.623 (18)	Rel-O14	1.689 (13)
$\mathrm{PbI}-\mathrm{Ol} 2^{\text {v11 }}$	2.623 (18)	Re2-021	1.734 (19)
$\mathrm{Pb} 2-\mathrm{S}$	2.973 (9)	Re2-022	1.73 (2)
$\mathrm{Pb} 2-\mathrm{S}^{\text {viii }}$	2.991 (9)	$\mathrm{Re} 2-\mathrm{O} 23^{\text {xiv }}$	1.729 (16)
$\mathrm{Pb} 2-\mathrm{O} 13$	2.564 (14)	$\mathrm{Re} 2-\mathrm{O} 23{ }^{\text {ii1 }}$	1.729 (16)
$\mathrm{Pb} 2-013{ }^{1 \times}$	2.564 (14)	$\mathrm{S}-\mathrm{C}$	1.742 (16)
$\mathrm{Pb} 2-021^{\text {x }}$	2.891 (11)	$\mathrm{N}-\mathrm{C}$	1.32 (3)
$\mathrm{Pb} 2-\mathrm{O} 21^{\times 1}$	2.891 (19)		
O11-Re1-O12	107.3 (8)	$\mathrm{O} 21-\mathrm{Re} 2-\mathrm{O} 23^{\text {xiv }}$	108.3 (9)
O11-Rel-O13	109.4 (9)	O21-Re2-023 ${ }^{\text {I' }}$	108.3 (7)
O11-Rel-O14	113.1 (9)	O22-Re2-O23 ${ }^{\text {xiv }}$	110.5 (9)
O12-Rel-O13	108.7 (9)	O22-Re2-023 ${ }^{\text {I' }}$	110.5 (7)

$\mathrm{O} 12-\mathrm{Re} 1-\mathrm{O} 14$	$109.1(9)$	$\mathrm{O} 23^{\mathrm{xiv}}-\mathrm{Re} 2-\mathrm{O} 23^{i i \prime}$	$107.8(8)$
$\mathrm{O} 13-\mathrm{Re} 1-\mathrm{O} 14$	$109.0(8)$	$\mathrm{N}-\mathrm{C}-\mathrm{N}^{1 \mathrm{x}}$	$120(2)$
$\mathrm{O} 21-\mathrm{Re} 2-\mathrm{O} 22$	$111.3(8)$		

Symmetry codes: (i) $1-x, 1-y, z$; (ii) $1-y, x,-z$; (iii) $y, 1-x,-z$; (iv) $x, y, z-1$; (v) $1-x, 1-y, z-1$; (vi) $1-y, x, 1-z$; (vii) $y, 1-x, 1-z$; (viii) $x, y, 1+z$; (ix) $y-\frac{1}{2}, \frac{1}{2}+x, z$; (x) $\frac{1}{2}-x, y-\frac{1}{2},-z$; (xi) $x-\frac{1}{2}, \frac{3}{2}-y,-z$; (xii) $\frac{1}{2}-x, y-\frac{1}{2}, 1-z$; (xiii) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$; (xiv) $\frac{1}{2}-x, \frac{1}{2}+y,-z$.

The water H atoms were found from a difference Fourier map and the urea H atoms were placed in calculated positions (C -$\mathrm{N}-\mathrm{H} 120^{\circ}, \mathrm{N}-\mathrm{H} 0.95 \AA$). All H atoms were refined as riding with fixed $U_{\text {iso }}=0.044 \AA^{2}$. The absolute configuration was elucidated by refinement of the two enantiomers with the same intensity data. The refinement of the alternative enantiomer converged at $R=0.047$ and $w R=0.056$, and one atom (O 21) was non-positive definite. No other tests for the correctness of the absolute-configuration assignment were performed.

Data collection: CAD-4 diffractometer software (EnrafNonius, 1988). Data reduction: SDP/PDP (Enraf-Nonius, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SDP/PDP. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: KAPPA (Macíček, unpublished).

This work has been supported by the Bulgarian National Science Fund (projects Ch-68 and Ch-402).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NS1002). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Boeyens, J. C. A. \& Herbstein, F. H. (1967). Inorg. Chem. 6, 14081425.

Boher, P., Garnier, P., Gavarri, J. R. \& Hewat, A. W. (1985). J. Solid State Chem. 57, 343-350.
Eby, R. K. \& Hawthome, F. C. (1993). Acla Cryst. B49, 28-56.
Elcombe, M. M. \& Taylor, J. C. (1968). Acta Cryst. A24, 410-420.
Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 35723582.

Goldberg, I. \& Herbstein, F. H. (1972). Acta Cryst. B28, 400-405.
Hawthome, F. C. (1994). Acta Cryst. B50, 481-510.
Herbstein, F. H. \& Reisner, G. M. (1984). Z. Kristallogr. 169, 83-93. Hill, R. J. (1985). Acta Cryst. C41, 1281-1284.
ICDD (1994). Powder Diffraction File, Set 44. International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
King, R. B. (1969). J. Am. Chem. Soc. 91, 7211-7216.
Lock, C. J. L. \& Turner, G. (1975). Acta Cryst. B31, 1764-1765.
Macíček, J. \& Todorov, T. (1992). Acta Cryst. C48, 599-603.
Macíček, J., Angelova, O. \& Petrova, R. (1995a). Z. Kristallogr. 210, 24-30.
Macíček, J., Angelova, O. \& Petrova, R. (1995b). Z. Kristallogr. 210, 319-322.
Nardelli, M. \& Fava, G. (1959). Acta Cryst. 12, 727-732.
Nardelli, M., Fava, G. \& Branchi, G. (1960). Acta Cryst. 13, 898-904.

Picard, J.-P., Baud, G., Besse, J.-P., Chevalier, R. \& Gasperin, M. (1984). J. Less-Common Met. 96, 171-176.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen. Germany.
Slimane, Z. A. A., Silvestre, J.-P., Freundlich, W. \& Rimsky, A. (1982). Acta Cryst. B38, 1070-1074.

Stout, G. H. \& Jensen, H. (1968). X-ray Structure Determination. New York: Macmillan.
Todorov, T. \& Macíček, J. (1995). Acta Cryst. C51, 1034-1038.
Verhoef, L. H. W. \& Boeyens, J. C. A. (1968). Acta Cryst. B24, 1262-1266.
Walker, N. G. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 2542-2544

Tetrakis(N, N^{\prime}-diphenylbenzamidinato)dicopper(II) Dichloromethane Solvate

Joan Halfpenny

Department of Chemistry and Physics, Nottingham
Trent University, Clifton Lane, Nottingham NGII 8NS, England
(Received 30 January 1995; accepted 27 June 1995)

Abstract

The title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, forms a cage structure with fourfold symmetry. The cage comprises two Cu atoms lying on the axis and four bridging ligand units related by the fourfold rotation. The ligand units also have approximate twofold axial symmetry. The $\mathrm{Cu} 1-\mathrm{Cu} 2$ separation of 2.460 (2) \AA is consistent with a single-bond distance. The metalligand distances, $\mathrm{Cu} 1-\mathrm{N} 1$ of 2.020 (5) and $\mathrm{Cu} 2-\mathrm{N} 2$ of 2.027 (4) \AA, are effectively equal. A cavity within the structure is occupied by disordered molecules of dichloromethane solvent.

Comment

As part of a study of amidino complexes of Cu^{1} and $\mathrm{Cu}^{\mathrm{II}}$, the title compound, (I), was prepared from anhydrous copper(II) chloride and lithio(N, N^{\prime}-diphenylbenzamidine) in monoglyme solution (Kilner \&

(I)

Pietrzykowski, 1983), and recrystallized from dichloromethane.

In the structure, the two non-equivalent Cu atoms lie on the same fourfold axis of the space group and are bridged by four ligand molecules forming a binuclear cage (Figs. 1 and 2). The ligand has approximate twofold symmetry about an axis in the $\mathrm{C} 1-\mathrm{C} 8 \cdots \mathrm{C} 11$ direction, which relates the two halves of the molecule. The point-group symmetry of the molecule is thus approximately $422\left(D_{4}\right)$, the fourfold symmetry, of course, being exact. The two Cu atoms are sufficiently close [$2.460(2) \AA$] to be regarded as single bonded and the two $\mathrm{Cu}-\mathrm{N}$ distances [2.020(5) and 2.027 (4) \AA] are very similar. In the ligand, the distances $\mathrm{Cl}-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{N} 2$ of 1.327 (8) and 1.335 (8) \AA, respectively, are virtually identical, indicating that delocalization has occurred, which is in contrast to the significantly different mean values of 1.360 (8) and 1.302 (7) \AA found for $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}=\mathrm{N}$, respectively, in the free uncoordinated ligand dimer (Alcock, Barker \& Kilner, 1988). These workers considered there to be a marked interaction between the $\mathrm{C}-\mathrm{N}$ (amine) part of the skeleton and its associated phenyl ring, with a tendency towards planarity. This effect is absent in the present structure where the dihedral angles between the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ plane and the planes of the phenyl groups at C2 and C14 are nearly equal at 63.7 (5) and $65.2(5)^{\circ}$, respectively. This feature is evidenced also by the pseudosymmetry of the ligand moiety. The increased $\mathrm{C} 1-\mathrm{C} 8$ length of 1.524 (6) \AA, compared with the mean value $1.485 \AA$ in the free ligand, is evidence of the loss of conjugation with the phenyl group in that structure in favour of delocalization

Fig. 1. The title molecule viewed along the fourfold axis, with independent atoms labelled. Atom Cu 2 is overlapped exactly by Cu .

